If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16(t^2-4t+3)=0
We multiply parentheses
16t^2-64t+48=0
a = 16; b = -64; c = +48;
Δ = b2-4ac
Δ = -642-4·16·48
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-32}{2*16}=\frac{32}{32} =1 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+32}{2*16}=\frac{96}{32} =3 $
| 3j=-12-3j | | 5u(u-1)(u+2)=0 | | x^2+2x+6=8x-2 | | 3j=12-3j | | 9.7–4d=–2.3 | | 5x^2+3x^2=3+7 | | X(x+3)=460 | | .9.7–4d=–2.3 | | 18x-15x=30 | | x^2+24x-3=0 | | 3/8x-1/10=-5/8x-3/5 | | -5+16y=43 | | -8=-2(x+6) | | (7h3+8h)=(9h3+h2−2h) | | 4.22v=37.8 | | 2z+5/5=3z=1/2+7-z/2 | | 22=1/2/h(4+7) | | 33=-7-8a | | 11+k/2=60 | | 3(2y+4)=4(2y−12) | | 5/9y=4/7 | | 5x^2−34x=−24 | | 5x2−34x=−24 | | 2x-3=135+45 | | -3(2x+8)+5=4x-21 | | 5=36A-6B+c | | -5=5(7+p) | | 36=6+x/5 | | 22=1/5x(4+7) | | 8b-3=4(2b+3) | | 3x+17=14x–5 | | 3(b+3)=30 |